Measures the precision of estimated values, and the potential response to selection on those estimated values compared to a check
reliability(x, ...)
# Default S3 method
reliability(x, y = NULL, ...)
# S3 method for class 'PlackettLuce'
reliability(x, ref, ...)
# S3 method for class 'pltree'
reliability(x, ref, ...)the reliability based on the worth parameters
Eskridge and Mumm (1992). Theoret. Appl. Genetics 84, 494–500 doi:10.1007/BF00229512 .
# Case 1. vector example
x = c(9.5, 12, 12.3, 17)
y = 11.2
reliability(x, y)
#> [1] 0.4589372 0.5172414 0.5234043 0.6028369
# Case 2. PlackettLuce model
library("PlackettLuce")
R = matrix(c(1, 2, 4, 3,
4, 1, 2, 3,
2, 3, 1, 4,
4, 2, 3, 1,
2, 1, 4, 3,
1, 4, 3, 2), nrow = 6, byrow = TRUE)
colnames(R) = c("apple", "banana", "orange", "pear")
mod = PlackettLuce(R)
reliability(mod, ref = "orange")
#> item reliability reliabilitySE worth Zvalue Pr(>|z|)
#> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1: apple 0.5760 0.1387 0.2516 0.4041 0.6861
#> 2: banana 0.6406 0.1266 0.3301 0.7888 0.4302
#> 3: orange 0.5000 0.1260 0.1852 NA NA
#> 4: pear 0.5572 0.1178 0.2331 0.3281 0.7428
# \donttest{
# Case 3. PlackettLuce tree
data("beans", package = "PlackettLuce")
G = rank_tricot(data = beans,
items = c(1:3),
input = c(4:5),
group = TRUE,
additional.rank = beans[c(6:8)])
pld = cbind(G, beans[,c("maxTN", "season", "lon")])
tree = pltree(G ~ maxTN + season + lon, data = pld)
reliability(tree, ref = "Local")
#> node item reliability reliabilitySE worth Zvalue Pr(>|z|)
#> <int> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1: 3 ALS 0532-6 0.3071 0.0262 0.0726 -5.9109 0.0000
#> 2: 3 BRT 103-182 0.3339 0.0281 0.0822 -4.9215 0.0000
#> 3: 3 INTA Centro Sur 0.3512 0.0277 0.0887 -4.5363 0.0000
#> 4: 3 INTA Ferroso 0.3588 0.0276 0.0917 -4.3423 0.0000
#> 5: 3 INTA Matagalpa 0.3070 0.0259 0.0726 -5.9499 0.0000
#> ---
#> 29: 5 INTA Rojo 0.4617 0.0315 0.0825 -1.1109 0.2666
#> 30: 5 INTA Sequia 0.5584 0.0311 0.1216 1.7235 0.0848
#> 31: 5 Local 0.5000 0.0132 0.0962 NA NA
#> 32: 5 PM2 Don Rey 0.5009 0.0322 0.0965 0.0256 0.9796
#> 33: 5 SJC 730-79 0.4168 0.0290 0.0687 -2.5542 0.0106
# }