Regret is an important heuristic in the behavioural sciences. Minimizing worst regret (the loss under the worst possible outcome) is a criterion that takes a conservative approach to risk analysis in diversification strategies.

regret(object, ..., bootstrap = TRUE, normalize = TRUE)

# Default S3 method
regret(object, ..., values, items, group, bootstrap = TRUE, normalize = TRUE)

# S3 method for class 'pltree'
regret(object, bootstrap = TRUE, normalize = TRUE, ...)

# S3 method for class 'list'
regret(object, bootstrap = TRUE, normalize = TRUE, ...)

Arguments

object

a data.frame, an object of class pltree, or a list with PlackettLuce models

...

further arguments passed to methods

bootstrap

logical, to run a Bayesian bootstrap on object

normalize

logical, to normalize values to sum to 1

values

an index in object with the values to compute regret

items

an index in object for the different items

group

an index in object for the different scenarios

Value

A data frame with regret estimates

items

the item names

worth

the worth parameters

regret

the squared regret

worst_regret

the worst regret

Details

Additional details for Bayesian bootstrap: statistic A function that accepts data as its first argument and possibly, the weights as its second, if use_weights is TRUE; n1 The size of the bootstrap sample; n2 The sample size used to calculate the statistic each bootstrap draw

References

Loomes G. & Sugden R. (1982). The Economic Journal, 92(368), 805. doi:10.2307/2232669

Bleichrodt H. & Wakker P. P. (2015). The Economic Journal, 125(583), 493–532. doi:10.1111/ecoj.12200

Author

Jacob van Etten and Kauê de Sousa

Examples


# Case 1 ####
library("PlackettLuce")
data("breadwheat", package = "gosset")

# convert the tricot rankings from breadwheat data
# into a object of class 'grouped_rankings'

G = rank_tricot(breadwheat,
                 items = c("variety_a","variety_b","variety_c"),
                 input = c("overall_best","overall_worst"),
                 group = TRUE)


# combine grouped rankings with temperature indices
mydata = cbind(G, breadwheat[c("lon","lat")])

# fit a pltree model using geographic data
mod = pltree(G ~ ., data = mydata)

regret(mod)

# Case 2 ####
# list of PlackettLuce models
R = matrix(c(1, 2, 3, 0,
              4, 1, 2, 3,
              2, 1, 3, 4,
              1, 2, 3, 0,
              2, 1, 3, 0,
              1, 0, 3, 2), nrow = 6, byrow = TRUE)
colnames(R) = c("apple", "banana", "orange", "pear")

mod1 = PlackettLuce(R)

R2 = matrix(c(1, 2, 0, 3,
               2, 1, 0, 3,
               2, 1, 0, 3,
               1, 2, 0, 3,
               2, 1, 0, 3,
               1, 3, 4, 2), nrow = 6, byrow = TRUE)
colnames(R2) = c("apple", "banana", "orange", "pear")

mod2 = PlackettLuce(R2)

mod = list(mod1, mod2)

regret(mod, n1 = 500)