Returns the covariates used to split a recursive partitioning tree and the rules that were applied to build the tree

# S3 method for class 'pltree'
plot(x, log = TRUE, ref = NULL, ...)

# S3 method for class 'PlackettLuce'
plot(x, ...)

node_labels(x)

node_rules(x)

top_items(x, top = 5)

Arguments

x

an object of class party or PlackettLuce

log

logical, if TRUE log-worth coefficients are displayed instead of worth

ref

optional, character or integer for the reference item when log = TRUE

...

additional arguments passed to methods. See details

top

an integer for the number of items to return

Value

a vector with the node labels, a data.frame with node rules, a ggplot object

Details

multcomp = TRUE adds multi-comparison letters from multcompView ci.level = numeric for the confidence interval levels

Author

Kauê de Sousa

Examples

# \donttest{
library("PlackettLuce")
library("ggplot2")

data("beans", package = "PlackettLuce")

G = rank_tricot(data = beans,
                items = c(1:3),
                input = c(4:5),
                group = TRUE,
                additional.rank = beans[c(6:8)])
  
pld = cbind(G, beans[,c("maxTN", "season", "lon")])

tree = pltree(G ~ maxTN + season + lon, data = pld)

node_labels(tree)

node_rules(tree)

top_items(tree)

plot(tree)

plot(tree, log = FALSE)

#################################

# Plot PlackettLuce 
R = matrix(c(1, 2, 4, 3,
             4, 1, 2, 3,
             2, 4, 1, 3,
             1, 2, 3, 0,
             2, 1, 4, 3,
             1, 4, 3, 2), nrow = 6, byrow = TRUE)
colnames(R) = c("apple", "banana", "orange", "pear")
R = as.rankings(R)

mod = PlackettLuce(R)

plot(mod)

# }